Lesson 23: Introduction to Direct and Indirect Proportion

Simple Direct Proportion (Direct Variation)

Definition: A proportion is a statement that two ratios are equal.
The direct proportion " a is to b as c is to d " (or $a: b:: c: d$) is the equality

$$
\frac{a}{b}=\frac{c}{d} \quad(\text { quotient }=\text { quotient })
$$

In the above proportion, a and d are called the extremes and b and c are called the means of the proportion. We may also define a proportion as a mathematical statement indicating the equality between two equivalent fractions. Example: $\frac{2}{3}=\frac{4}{6}$ is a proportion

Proportion Principles

1. We can invert both ratios of a proportion: From (1) above, we obtain after the inversion,

$$
\frac{b}{a}=\frac{d}{c}
$$

2. We can interchange the extremes of a proportion: From (1) above we would obtain:

$$
\frac{d}{b}=\frac{c}{a}
$$

3. We can also interchange the means to obtain:

$$
\frac{a}{c}=\frac{b}{d}
$$

Also $a d=b c$ (That is the product of the extremes = the product of the means) <-- also called cross-multiplication The proportion principles can be used to obtain desired ratios. For example, if we have $\frac{3}{2}$ as the ratio of one side of a proportion, and we desire the ratio $\frac{2}{3}$ then proportion principle \#1 above (inversion of both sides of a proportion) can be used to obtain this ratio, $\frac{2}{3}$, from $\frac{3}{2}$.
More Principles (From $\frac{a}{b}=\frac{c}{d}$, we obtain the following:
4. $\frac{a+b}{b}=\frac{c+d}{d}$ (by addition). Note: $\frac{a+b}{b}=\frac{a}{b}+\frac{b}{b}=\frac{a}{b}+1$ and $\frac{c+d}{d}=\frac{c}{d}+\frac{d}{d}=\frac{c}{d}+1$
5. $\frac{a-b}{b}=\frac{c-d}{d}$ (by subtraction)
6. $\frac{a-b}{a+b}=\frac{c-d}{c+d}$ (by subtraction and addition)
7. $\frac{a+b}{a-b}=\frac{c+d}{c-d}$ (by addition and subtraction)
8. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, then $\frac{a+c+e}{b+d+f}=\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$
e.g., $\left(\frac{2}{10}=\frac{3}{15}=\frac{4}{20}=\frac{2+3+4}{10+15+20}=\frac{9}{45}=\frac{1}{5}\right)$

To show that $\mathbf{8}$ is true, see Appendix, p. 306

Problems Involving Proportion

Example 1 Find x from the proportion x is to 4 as 3 is to 2 .
Solution $\quad \frac{x}{4}=\frac{3}{2}$

$$
\begin{aligned}
2 x & =12 \\
x & =6
\end{aligned} \quad \text { (cross multiplication) }
$$

(You could also solve the above equation by multiplying both sides of the equation by 4)
Example 2 Find x from the proportion: 6 is to x as 4 is to 12 .
Solution

$$
\begin{aligned}
& \frac{6}{x}=\frac{4}{12} \\
& 4 x=72 ; \text { and } x=18
\end{aligned}
$$

To show that if $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, then $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}$
We proceed in two steps. In Step 1, we consider $\frac{a}{b}=\frac{c}{d}$. In Step 2, We consider the result from Step 1 and $\frac{e}{f}$.
Step 1: $\frac{a}{b}=\frac{c}{d} \quad$ (Given)

$$
\begin{array}{ll}
\frac{a}{b}+\frac{c}{b}=\frac{c}{d}+\frac{c}{b} & \text { (Adding } \frac{c}{b} \text { to both sides of the equation) } \\
\frac{a+c}{b}=\frac{b c+c d}{b d} & \text { (Adding on the LHS and on the RHS of the equation) } \\
\frac{a+c}{b}=\frac{c(b+d)}{b d} & \text { (Factoring the RHS) } \\
\frac{a+c}{b+d}=\frac{b c}{b d} & \text { (Dividing both sides by } b+d \text { and multiplying both sides by } b \text {) } \\
\frac{a+c}{b+d}=\frac{c}{d} & \text { (Dividing out the } b \text { on the RHS) }
\end{array}
$$

Step 2: $\frac{a+c}{b+d}=\frac{e}{f} \quad$ (Since $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, replace $\frac{c}{d}$ on the RHS by $\frac{e}{f}$)

$$
\begin{aligned}
& \frac{a+c}{b+d}+\frac{e}{b+d}=\frac{e}{f}+\frac{e}{b+d} \text { (Adding } \frac{e}{b+d} \text { to both sides of the equation) } \\
& \frac{a+c+e}{b+d}=\frac{e(b+d)+e f}{f(b+d)} \quad \text { (Adding on the LHS and on the RHS of the equation) } \\
& \frac{a+c+e}{b+d}=\frac{b e+d e+e f}{f(b+d)} \\
& \frac{a+c+e}{b+d}=\frac{e(b+d+f)}{f(b+d)} \quad \text { (Factoring out the } e \text { on the RHS) } \\
& \frac{a+c+e}{b+d+f}=\frac{e(b+d)}{f(b+d)} \quad \text { (Dividing both sides by } b+d+f \text { and multiplying by } b+d \text {) } \\
& \frac{a+c+e}{b+d+f}=\frac{e}{f} \quad \text { (Dividing out the } b+d \text { on the RHS) } \\
& \text { Since } \frac{a}{b}=\frac{c}{d}=\frac{e}{f}, \quad \text { (given) } \\
& \frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}
\end{aligned}
$$

Application of the above to similar triangles.

Consider two similar triangles ABC and DEF .
If the lengths of the sides of $\Delta \mathrm{ABC}$ are a, b, c and the corresponding lengths of the sides of
Δ DEF are d, e, f, then for the ratios of corresponding sides, $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}$ and
$\frac{a}{d}=\frac{b}{e}=\frac{c}{f}=\frac{a+b+c}{d+e+f}$. Thus $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}=\frac{\text { perimeter of } \Delta \mathrm{ABC}}{\text { perimeter of } \triangle \mathrm{DEF}}$
Example Let the lengths of sides of $\Delta \mathrm{ABC}$ be 2,3,4; and let the corresponding lengths of the sides
Δ DEF be $10,15.20$,. Then $\frac{2}{10}=\frac{3}{15}=\frac{4}{20}=\frac{2+3+4}{10+15+20}=\frac{9}{45}=\frac{1}{5}$

